

How Is LLM Reasoning Distracted by Irrelevant Context? An Analysis Using a Controlled Benchmark

Language

Minglai Yang¹, Ethan Huang¹, Liang Zhang¹, Mihai Surdeanu¹, William Yang Wang², Liangming Pan¹

¹University of Arizona ²University of California, Santa Barbara

mingly@arizona.edu, liangmingpan@arizona.edu

Introduction

Graph-Based Benchmark for Controlled Experiments

General Framework (Gen&Eval): Grade School Math with Distracting Context (GSM-DC)

How robust is LLM reasoning?

LLM is easy to be affected by irrelevant context.

Flanker Effect:

When a target stimulus is surrounded by distractors suggesting a different response, people take longer to respond and tend to make more mistakes.

Challenges:

- 1) How does varying the amount of irrelevant context affect robustness?
- 2) Can robust reasoning be enhanced through continued pretraining or LoRA?
- 3) How does the intensity of IC during training impact model performance in both in-distribution and OOD scenarios?
- 4) How can the above questions be qualitatively evaluated?

Solutions:

GSM-DC - A synthetic benchmark

• The explicit injection of irrelevant context via offpath nodes and edges without affecting correct solutions.

Results from Controlled Experiments

Result 1: LLMs' reasoning performance degrades with increasing irrelevant context.

Result 2: Irrelevant context degrades accuracy more steeply at greater reasoning depths.

- Adjustment of reasoning complexity by varying graph depth and structure.
- Automatic evaluation of model outputs.
- Exploration through controlled experiments.

Metrics

Automatic stepwise evaluation of solutions by comparing with the correct reasoning path:

Step Accuracy (SAcc):

- Each step must compute the correct value using only reachable nodes in G'.
- Extra steps are allowed if they don't interfere.

Path Accuracy (PAcc):

- The predicted reasoning must node-level aligned with P
- Permitting redundancy but not confused by irrelevant context.

Extraction Answer Accuracy (EAcc):

- The final answer must match the ground-truth solution S.

Result 3: Continued pretraining enhances robustness even without access to IC samples.

Fig: Step accuracy of models trained with Non-IC or IC data using LoRA or continued pretraining.

Result 5: Training with challenging irrelevant context leads to the strongest robustness and generalization across all pretraining settings.

Result 4: Training with irrelevant context improves robustness most effectively.

rs	Clean		Clean+IC		IC	
	SAcc	PAcc	SAcc	PAcc	SAcc	PAcc
≤ 15	35.9	41.3	70.0	71.2	73.2	74.7
16	22.0	22.7	32.0	32.0	33.3	33.3
17	21.0	21.0	23.0	23.0	20.7	21.3
18	13.0	13.0	15.7	15.7	16.7	16.7
19	13.7	13.7	13.3	13.3	15.0	15.0
20	9.0	9.0	8.3	8.3	10.0	10.0
21	7.7	7.7	8.7	8.7	5.7	5.7
22	6.0	6.0	5.3	5.3	6.3	6.3

Fig: Comparison of SAcc and PAcc under different training regimes: Clean, Clean+IC, and IC.

Result 6: Improving reasoning robustness at test time: Tree search can enhance the generalization capabilities of LLMs.

Note: All metrics are computed using a symbolic parser with node-level alignment, not strict sentence-level sequence matching.

Limitations

Broader applicability

Methodology applies to any symbolic reasoning task (e.g., logic, algorithms).

Extension to non-unique reasoning paths:

• Allow multiple valid reasoning chains

Plans for new evaluations:

- RL-based training using Process Reward Models.
- Designing stepwise evaluator to evaluate reasoning models such as OpenAI o1/o3/o4 and DeepSeek-R1.

Training	Testing w/ IC (SAcc)			Testing w/o IC (SAcc)			
Noise Level	ID	OOD	All	ID	OOD	All	
CLEAN	35.91	13.19	32.36	81.95	17.05	60.32	
LIGHT-IC	64.79	6.90	46.57	67.33	7.09	46.56	
MEDIUM-IC	65.79	7.23	47.44	69.39	9.95	50.38	
HARD-IC	77.95	18.57	59.48	82.30	19.86	61.21	
Max IC	72 22	15 33	57 86	78 00	15 62	57 38	
MIX-IC	15.25	15.55	57.00	10.07	15.02	57.50	
MIX-IC	15.25	15.55	57.00	70.07	15.02	57.50	
Training	13.23	D Test SA	сс сс	00	DD Test SA	4cc	
Training IC Level	Light	D Test SA Medium	cc Hard	OC Light	DD Test SA Medium	Acc Hard	
Training IC Level LIGHT-IC	II Light 67.21	D Test SA Medium 66.57	cc Hard 60.57	OC Light 8.14	DD Test SA Medium 7.29	Acc Hard 5.28	
Training IC Level LIGHT-IC MEDIUM-IC	II Light 67.21 68.14	D Test SA Medium 66.57 66.07	cc Hard 60.57 63.14	OC Light 8.14 8.71	DD Test SA Medium 7.29 8.43	Acc Hard 5.28 4.57	
Training IC Level LIGHT-IC MEDIUM-IC HARD-IC	II Light 67.21 68.14 78.36	D Test SA Medium 66.57 66.07 79.21	cc Hard 60.57 63.14 76.28	OC Light 8.14 8.71 22.7	DD Test SA Medium 7.29 8.43 18.43	Acc Hard 5.28 4.57 14.57	
Training IC Level LIGHT-IC MEDIUM-IC HARD-IC MIX-IC	II Light 67.21 68.14 78.36 74.71	D Test SA Medium 66.57 66.07 79.21 75.07	cc Hard 60.57 63.14 76.28 69.93	OC Light 8.14 8.71 22.7 17.7	DD Test SA Medium 7.29 8.43 18.43 16.57	Acc Hard 5.28 4.57 14.57 11.28	

Training	ID SAcc			OOD SAcc		
IC Level	w/o PRM	w/ PRM	Δ	w/o PRM	w/ PRM	Δ
LIGHT-IC MEDIUM-IC HARD-IC MIX-IC CLEAN	64.79 65.79 77.95 73.23 35.91	66.10 70.05 79.48 75.81 36.38	+1.31 +4.26 +1.53 +2.58 +0.47	6.90 7.23 18.57 15.33 13.19	9.59 13.52 24.17 19.06 15.76	+2.69 +6.29 +5.60 +3.73 +2.57