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Analyze Robust Reasoning Capability

LLMs have exhibited emergent ability to “reason” like human 

… which gives them the potential to reasoning in robust environment

How robust is language model reasoning?

We need to evaluate how language models perform in tasks 
requiring arithmetic precision and resistance to distractions.

However, current language models are still sensitive to prompts, 
not generalizable and illogical reasoning … 
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Why does LLM fall for distractions?

When a target stimulus is surrounded by distractors suggesting a different 
response, people take longer to respond and tend to make more mistakes.
“

Eriksen-Flanker Effect

We find that LLM suffers from 
the irrelevant information 
heavily, especially OOD.



Grade-School Math with Irrelevant Context (Denny Zhou)

The added irrelevant sentence is in 
italic and highlighted in red, which 
causes different errors (highlighted in 
yellow) for all prompting techniques. 

https://arxiv.org/pdf/2302.00093


Cutting Through the Noise (Anantheswaran, 2024)

Through carefully designed trivial human-crafted 
noise injection and datasets (PROBLEMATHIC and 
GSM-8K-Adv). 
They demonstrated how to enhance model 
robustness against noise: Fine-tuning models on 
adversarial data improves their resistance to noise, 
while training on original data proves less effective.

https://arxiv.org/pdf/2406.15444


Gaps in Previous Research
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In those datasets, the irrelevant context is either human-crafted or single-sentence instances.

Cannot differ the error from reasoning chain or arithmetic mistake

Controllable Questions + Controllable Irrelevant context + Precise Accuracy  

Analysis of the robustness of LLM reasoning under irrelevant context

Not been tested on more complex questions involving OOD testing

Analysis only based on prompts

Potential for Fine-tuning Overfitting



• Introduction
• Dataset Construction: Graph-Based Controllable Math Dataset
• Evaluation: Differ Math and Path Search
• Analysis: Controlled Experiments on Irrelevant Context
• Improvement: Tree Search with Process Reward Models
• Conclusion
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Outline



Physics of Language Models Part 2.1 (Zeyuan Allen-Zhu)

iGSM Dataset
Example problem numbers, edges, 
operations, and variables are all 
controllable. 

They build a Directed Acyclic Graph 
(DAG) for each problem and select two 
points, asked the questions based on 
these two points and the solution will be 
the path by topological sort to these 
two points. 

Therefore, the solution can also be 
checked step by step.

Problem:
The number of each Penguin Beach's Giraffe equals 6. The number of 

each Octopus Den's Leopard equals each Octopus Den's Giraffe. The 
number of each Rockpool Exhibit's Leopard equals 20 more than the 
sum of each Octopus Den's Giraffe and each Octopus Den's Leopard. 
The number of each Rockpool Exhibit's Giraffe equals 8 times as much 
as the sum of each Octopus Den's Giraffe and each Octopus Den's 
Leopard. The number of each Octopus Den's Giraffe equals 21. How 
many Animal does Penguin Beach have?
Solution:
Define Penguin Beach's Giraffe as e; so e = 6. Define Penguin Beach's 

Animal as J; so J = e = 6.

https://physics.allen-zhu.com/part-2-grade-school-math/part-2-2


Graph-Based Math Problem Generation
Inspired by the iGSM dataset, we adopt their math problem generation approach 
using a Knowledge DAG. 
In our dataset, each node corresponds to a term selected from the GSM8K, while 
the edges represent numerical relationships between pairs of variables. 

The number of 𝛢 equals 3. 
The number of 𝐵 equals 4. 
The number of C is computed as A plus B. How much is C?

Question

Reasoning
Define 𝛢 as 𝛼, so 𝛼 = 3. 
Define 𝐵 as 𝛽, so 𝛽 = 4, 
Define C as 𝛾, so 𝛾 = 𝛼 + 𝛽 = 3 + 4 = 7.



After generating each question, we control the noise level by adjusting the unused 
parameters. Since the structure is a DAG, there is a unique path for each solution. 
The model is expected to ignore any unused parameters, such as H and Y. 

The number of 𝛢 equals 3. 
The number of 𝐵 equals 4. 
The number of C is computed as A plus B. How much is C?

Question

Reasoning
Define 𝛢 as 𝛼, so 𝛼 = 3. 
Define 𝐵 as 𝛽, so 𝛽 = 4, 
Define C as 𝛾, so 𝛾 = 𝛼 + 𝛽 = 3 + 4 = 7.

The number of 𝛢 equals 3. 
The number of 𝐵 equals 4. 
The number of H equals 8. 
The number of Y	equals 𝐵 plus 4 plus 1. 
The number of 𝐶 is computed as A plus B. How much is C?

Add Controllable Noise



The number of B equals 4. The number of M equals 2. The number of I 
equals -B plus 1. The number of K equals -B plus 1. The number of U 
equals M plus 2. The number of P equals -I plus 3. The number of S 
equals -K. The number of G equals P plus 4 plus M plus 1. The number of 
E equals -S plus 2. The number of H equals B plus 1 plus 2 times G plus 4 
times E plus 2 times U plus M. The number of L equals 2 times I plus E 
plus 3 plus 2. The number of D equals G plus 4 plus I plus H plus 3. The 
number of Y equals -K plus U plus E plus 4 times L. The number of F 
equals -Y plus 3 times L. The number of Q equals G plus F minus H 
minus P plus 3. The number of O equals D plus 3 times Q plus K plus 1 
minus H plus 3. The number of J equals Q plus 4 plus 2 times L plus 3. 
The number of Z equals K plus P plus 3 minus O minus Y plus 3 times E 
plus 2. The number of N equals H plus 2 plus Z plus 2. The number of A 
equals 3. The number of C is computed as A plus B. The number of X 
equals Q plus S minus Q plus 2 times Z plus A plus L plus 2 plus 1. The 
number of R equals 4 times J plus X plus 1. How much is C?

The number of B equals 4. The number of D equals 6. The 
number of Q equals 10. The number of E equals D plus 2 plus 2. 
The number of L equals B plus 2 minus Q plus D plus 1 plus 1. 
The number of J equals L plus 3 minus E. The number of G 
equals L minus D plus 3. The number of I equals -G minus J 
plus E. The number of H equals 2 times L plus 4 times I plus 3. 
The number of N equals H plus 5 plus G minus B. The number 
of Y equals N plus 5 plus 2 times D. The number of A equals 3. 
The number of C is computed as A plus B. How much is C?
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• Empirical Irrelevant Context Stratification 
via CDF Partitioning

• Irrelevant Context Score (𝑧!): Quantifies 
extraneous info per question

• Empirical CDF: "Ϝ = "
#
∑$%"# 𝑖 = 1#𝕀(𝑧! ≤ 𝑡)

• Partition into N bins: Thresholds 𝜏! where 
.Ϝ&(𝜏') =

'
(

 → equal-sized noise levels

Controllable Irrelevant Context 
at different operations
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The number of each Arts Campus's T&T Supermarket equals 3. The 
number of each Arts Campus's La Michoacana Meat Market equals 4. The number of each 
Arts Campus's Seafood City Supermarket equals 2 more than each Science Park's Zion 
Market. The number of each Preparatory School District's Zion Market equals each 
Engineering Campus's Seafood City Supermarket. The number of each Science Park's 
Seafood City Supermarket equals the sum of each Science Park's La Michoacana Meat 
Market and each Science Park's T&T Supermarket. The number of each Preparatory School 
District's Seafood City Supermarket equals 4 more than the sum of each Science Park's Zion 
Market, each Arts Campus's T&T Supermarket and each Arts Campus's Seafood City 
Supermarket. The number of each Arts Campus's Zion Market equals the sum of each Science 
Park's T&T Supermarket, each Arts Campus's T&T Supermarket and each Engineering 
Campus's La Michoacana Meat Market. The number of each Preparatory School District's 
T&T Supermarket equals 4 more than each Engineering Campus's Seafood City Supermarket. 
The number of each Science Park's T&T Supermarket equals 4. The number of each 
Engineering Campus's La Michoacana Meat Market equals 0. The number of each 
Engineering Campus's T&T Supermarket equals 1 times as much as the difference of each 
Engineering Campus's La Michoacana Meat Market and each Preparatory School District's 
Seafood City Supermarket. The number of each Engineering Campus's Seafood City 
Supermarket equals 2 times as much as the sum of each Science Park's Seafood City 
Supermarket, each Science Park's La Michoacana Meat Market and each Science Park's T&T 
Supermarket. The number of each Science Park's La Michoacana Meat Market equals 3 times 
as much as each Science Park's T&T Supermarket. The number of each Preparatory School 
District's La Michoacana Meat Market equals 3 more than the difference of each Science 
Park's T&T Supermarket and each Science Park's La Michoacana Meat Market. The 
number of each Science Park's Zion Market equals 1 more than 
each Arts Campus's T&T Supermarket. The number of each Engineering 
Campus's Zion Market equals each Engineering Campus's T&T Supermarket. 
How many Zion Market does Science Park have?

Define Arts Campus's T&T Supermarket as e; so e = 3. 
Define Science Park's Zion Market as w; so w = 3 + e = 3 + 1 = 4.

The number of each Arts Campus's T&T Supermarket equals 3. 
The number of each Science Park's Zion Market equals 1 more 
than each Arts Campus's T&T Supermarket. 
The number of each Engineering Campus's Zion Market equals each 
Engineering Campus's T&T Supermarket. 
How many Zion Market does Science Park have?

Question (Easy)

A Dataset Example of op=2

The number of each Arts Campus's T&T Supermarket equals 3. 
The number of each Arts Campus's La Michoacana Meat Market equals 4. 
The number of each Preparatory School District's La Michoacana Meat Market equals 3 
more than the difference of each Science Park's T&T Supermarket and each Science 
Park's La Michoacana Meat Market. 
The number of each Science Park's Zion Market equals 1 more than 
each Arts Campus's T&T Supermarket. 
The number of each Engineering Campus's Zion Market equals each Engineering 
Campus's T&T Supermarket. 
How many Zion Market does Science Park have?

Question (Medium)

Question (Hard)

Reasoning



• Introduction
• Dataset Construction: Graph-Based Controllable Math Dataset
• Evaluation: Separating Mathematical Reasoning from Path 

Search
• Analysis: Controlled Experiments on Irrelevant Context
• Improvement: Tree Search with Process Reward Models
• Conclusion
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Distraction Robustness (Path Accuracy)
• Separates arithmetic accuracy from the model’s ability to filter out irrelevant information.
• Assesses if the model correctly identifies key variables in a reasonable sequence.
• Provides a direct measure of resilience to distraction.

Novel Evaluation Metrics

Final-Answer Verification (Answer Accuracy)
• Evaluates the correctness of the final answer, regardless of CoT deviations
• While some closed-source models excel in this metric, they may struggle with fine-

tuning and produce non-standard CoT explanations.

Stepwise Accuracy 
• Verifies the correctness of each reasoning step. 
• Ensures all intermediate calculations align with the expected solution chain.
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Novel Evaluation Metrics
Large language model reasoning is unreliable in terms of:
• Poor performance under larger operations
• Sensitive to irrelevant context injections
   GPT-4o mini’s performance declines as irrelevant context increases on our dataset.
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Less Robust Reasoning Capability

Large language model reasoning is less robust in terms of:
• Limited Generalization: Struggles to generalize reasoning to larger 
operations.
• Poor Distraction Handling: Fails to filter out irrelevant information 
during reasoning.



• Introduction
• Dataset Construction: Graph-Based Controllable Math Dataset
• Evaluation: Differ Math and Path Search
• Analysis: Controlled Experiments on Irrelevant Context
• Improvement: Tree Search with Process Reward Models
• Conclusion
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Finetuning 
Methods

Control Experiments  of
Math Word Problems 

for LLM Reasoning

Controllable 
Noise

Controllable
Operations

GSM-DI Dataset

Training Approaches:
• Pretraining
• Supervised Finetuning
• …

Method:
• Full
• LoRA
• …Finetuning 

Dataset

Finetuning Dataset:
Limited Operations (<=15)
Limited Noise (Different Levels)
Training Samples



Controlled Experiments on Dataset
An LLM that is fully trained on limited operations may struggle 

with reasoning in more complex or larger operations.

Training on a limited 
operations is not 

generalizable

We will test the same op 
distribution as GSM-IC



21

Controlled Experiments on Dataset

An LLM trained on a mix of clean and irrelevant context data can 
achieve better out-of-distribution performance with irrelevant context.

Best in 
Generalization
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Controlled Experiments on Finetuning Methods 

Due to the complexity of path learning and denoising, full SFT is 
generally more effective than LoRA in mathematical reasoning tasks.

Full Finetuning doesn’t help with OOD 
testing even with irrelevant context

LoRA Finetuning does 
not help at Path Search
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Controlled Experiments on Finetuning Methods 

Noise will affect the model’s ability to perform mathematical 
operations, even if it has identified the correct path.

Irrelevant Context will 
influence LLM doing 
arithmetic operations

Arithmetic Accuracy=
∆(Accuracy, Path Accuracy) 
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Controlled Experiments on Irrelevant Context
Injecting more irrelevant context into the training set can improve 

performance on both ID and OOD test, enhancing the model’s ability to 
generalize to complex mathematical operations—even on a clean test set.

Training With “Hard 
Noise” Achieved a higher 
score than “Clean Only”

• ID: op <=15
• OOD: op > 15



• Introduction
• Dataset Construction: Graph-Based Controllable Math Dataset
• Evaluation: Differ Math and Path Search
• Analysis: Controlled Experiments on Irrelevant Context
• Improvement: Tree Search with Process Reward Models
• Conclusion
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Path Search in DAG

Dependency Graph Tree Like 
Dependency Graph
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Tree-of-Thought Reasoning

[Yao et al, Tree of Thoughts: Deliberate 
Problem Solving with Large Language Models]
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Performance with an increasing 
number of reasoning depth

Clean SFT with PRM is more reliable at 
deeper reasoning depths, surpassing the 
non-PRM model.

PRM may have a positive impact on 
complex reasoning tasks, particularly 
demonstrating greater reliability in OOD 
reasoning problems. 
 

Tree-of-Thought Reasoning



• Introduction
• Dataset Construction: Graph-Based Controllable Math Dataset
• Evaluation: Differ Math and Path Search
• Analysis: Meticulous Controlled Experiments
• Improvement: Tree Search with Process Reward Models
• Conclusion

29

Outline



Takeaways
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• Introducing controllable irrelevant context into the training set 
improves the reliability of reasoning.

• Learning path search is more challenging than mastering 
arithmetic calculations.

• Tree search can enhance the generalization capabilities of LLMs
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Thank You!

mingly@arizona.edu

http://ymingl.com 

mailto:mingly@arizona.edu
http://www.liangmingpan.com/

