
How Is LLM Reasoning Distracted by Irrelevant Context?
An Analysis Using a Controlled Benchmark

Minglai Yang1 Ethan Huang1 Liang Zhang1

Mihai Surdeanu1 William Wang2 Liangming Pan1

1University of Arizona 2University of California, Santa Barbara
{mingly, ehuang68, liangzh, msurdeanu, liangmingpan}@arizona.edu

william@cs.ucsb.edu

Abstract

We introduce Grade School Math with Distract-
ing Context (GSM-DC1), a synthetic bench-
mark to evaluate Large Language Models’
(LLMs) reasoning robustness against systemat-
ically controlled irrelevant context (IC). GSM-
DC constructs symbolic reasoning graphs with
precise distractor injections, enabling rigor-
ous, reproducible evaluation. Our experiments
demonstrate that LLMs are significantly sen-
sitive to IC, affecting both reasoning path se-
lection and arithmetic accuracy. Addition-
ally, training models with strong distractors
improves performance in both in-distribution
and out-of-distribution scenarios. We further
propose a stepwise tree search guided by a pro-
cess reward model, which notably enhances
robustness in out-of-distribution conditions.

1 Introduction

Recent advances in Large Language Models
(LLMs) have demonstrated reasoning capabilities
across diverse tasks, notably in solving mathemati-
cal problems (Cobbe et al., 2021; Lewkowycz et al.,
2022; Zhou et al., 2022; Yao et al., 2023a). Despite
these advancements, LLMs are found to be less
robust in reasoning (Berglund et al., 2024; Huang
et al., 2024; Xu et al., 2024). For example, the
Flanker Task (Eriksen and Eriksen, 1974) in cog-
nitive psychology shows that humans’ responses
become slower and less accurate with increased dis-
tractors. Shi et al. (2023a) first revealed that LLMs
similarly suffer performance degradation when ir-
relevant context is introduced, observing notable
reductions in accuracy even with just a single dis-
tractor sentence added to math problems from the
GSM8K dataset (Cobbe et al., 2021).

However, previous work has not systematically
explored the mechanisms underlying this sensi-
tivity. Shi et al. (2023a) employed only a single

1The code of our dataset and experiment can be viewed at
https://github.com/mlyann/GSM-DC

distractor, limited experiments to short reasoning
chains, and omitted supervised fine-tuning and out-
of-distribution (OOD) evaluations. Several impor-
tant questions thus remain: How does varying the
amount of IC affect robustness? Can robust reason-
ing be enhanced through supervised fine-tuning?
How does the intensity of IC during training im-
pact model performance in both in-distribution and
OOD scenarios? Additionally, how can the above
questions be qualitatively evaluated?

To address these gaps, we introduce GSM-DC,
a synthetic benchmark designed to enable precise
control over both reasoning complexity and distrac-
tor structure. Problems in GSM-DC are represented
as symbolic dependency graphs, where nodes cor-
respond to intermediate quantities and edges repre-
sent symbolic operations. This structure facilitates:
1) the explicit injection of irrelevant context via
off-path nodes and edges without affecting correct
solutions; 2) adjustment of reasoning complexity
by varying graph depth and structure; and 3) au-
tomatic evaluation of model outputs by aligning
predictions with the correct reasoning path.

Our dataset construction pipeline (Figure 1) in-
volves generating symbolic dependency graphs, in-
jecting distractors after determining the solution
path, and transforming these into human-readable
math word problems and solutions. We partition
our dataset based on different problem complexi-
ties and distractor intensities, conduct various con-
trolled experiments, and use automatic stepwise
metrics measuring arithmetic correctness and dis-
traction robustness. Our controlled experiments
yield three main findings. First, model accuracy
steadily decreases as distractor intensity rises. Sec-
ond, continued pretraining substantially enhances
reasoning robustness. Third, incorporating strong
IC during training significantly boosts model re-
silience, showing superior performance across var-
ious distractor intensities in out-of-domain testing.

To improve the model’s robustness against IC,

ar
X

iv
:2

50
5.

18
76

1v
1

 [
cs

.C
L

]
 2

4
M

ay
 2

02
5

https://github.com/mlyann/GSM-DC

Steps = 3
Max Edges = 6
Distractors = 2

forwardTopological Order

𝚨 𝑩 𝑪

𝑬 𝑫 𝑭

𝑒!

Dependency
Graph

Construction

Graph & Solution-Path

𝑉 = 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 ,

𝐸 =
𝐴, 𝑒! , 𝐵 , 𝐵, 𝑒" , 𝐶 ,
𝐸, 𝑒# , 𝐴 , 𝐸, 𝑒$, 𝐵 ,
𝐵, 𝑒% , 𝐷 , 𝐹, 𝑒& , 𝐷

𝓖 = 𝑽, 𝑬
𝓟 = 𝑨, 𝒆𝟏, 𝑩, 𝒆𝟐, 𝑪

Irrelevant
Context
Injection

Controllable
Distractors
Redesign

(Algorithm 1)

Natural
Language

Realization

Hierarchical	
Entity	

Vocabulary

NL	Templates
𝐴	 = [𝒙]	: The number of 𝐴 is [x].
𝐴, 𝒆𝟏, 𝐵 ⟺ 𝐵 = 𝐴 + [𝒖]	:

The number of each 𝐵 equals [𝐮]
more than each 𝐀.
𝐵, 𝒆𝟐, 𝐶 ⟺ 	𝐶 = 𝐵	×	[𝒌]	:

The number of each C equals …
Solution Template:
Define [param] as X; [steps] ...

Math Word Problem (𝓜)
A: Arts Campus's T&T Supermarket ; B: Science Park's Zion Market…
𝐴	 = 𝟓	: The number of Arts Campus's T&T Supermarket is 5.
𝐵 = 𝐴 + 𝟏: The number of each Science Park‘s Zion Market equals 1
more than each Arts Campus's T&T Supermarket.
𝐶 = 𝐵	×	𝟑: The number of each Arts Campus's Meat Market equals …
Question: How many Meat Market does Arts Campus have?

Ground-truth Solution (𝓢)
1. Define [Arts Campus's T&T Supermarket] as 𝛼; so 𝛼 = 5.
2. Define [Science Park's Zion Market] as 𝛽; so 𝛽 = 𝛼 + 1 = 5 + 1 = 1.
3. Define [Arts Campus's Meat Market] as 𝛾; so 𝛾 = 𝛽 × 3 = 1 × 3 = 3.

Accuracy
Step Accuracy

Path Accuracy

Final Answer

New Graph & Solution-Path
𝓖′ = {	𝑽6, 𝑬6}

𝓟 = 𝑨, 𝒆𝟏, 𝑩, 𝒆𝟐, 𝑪

Predicted Solution:
Define Arts Campus's T&T
Supermarket as c; so 𝑑 = 5.
Define Science Park's Zion
Market as 𝑎; so 𝑎 = 𝑑 + 1 = 5 + 1
= 0. Define Arts Campus's Meat
Market as 𝑞; so 𝑞 = 𝑎 × 3 = 0 ×
3 = 0. So the final answer is 0.

Stepwise
Solution

Evaluator

𝑒$

Dependencies

Direct Dependency

Implicit Dependency

Instance Dependency

𝑨, 𝒆𝟏, 𝑩 , 𝑨, 𝒆𝟏, 𝑪
⟺ 𝑨, 𝑩, 𝒆𝟏, 𝑪
⟺	 𝑪 = 𝑨	×	𝑩

..

..

𝑳𝑳𝑴

Dataset Construction

Model Evaluation
{𝓖9,𝓜,𝓟, 𝓢}

Figure 1: Overview of the GSM-DC framework: both generation and evaluation pipeline. The dataset construction
process (orange) involves three key steps: (1) Dependency Graph Construction builds a symbolic DAG with a
defined solution path via topological sort, (2) Irrelevant Context Injection adds controllable distractor nodes to
increase reasoning complexity, and (3) Natural Language Realization converts the symbolic graph into a human-
readable word problem and finds the solution following the solution path. The resulting instance is evaluated using
a Stepwise Solution Evaluator that computes Step Accuracy, Path Accuracy, and Extraction Answer Accuracy.

we propose a stepwise beam search algorithm
guided by a Process Reward Model (PRM), which
scores partial reasoning paths based on their align-
ment with valid solution trajectories. This approach
further improves robustness by up to 6.29% in out-
of-domain conditions, highlighting reinforcement
learning’s potential to strengthen robustness against
irrelevant context in model reasoning.

2 Related Work
Reasoning with Irrelevant Context LLMs of-
ten struggle to reason accurately in the presence
of irrelevant context (IC). Prior work has explored
this vulnerability by introducing distractors into
math problems. For example, GSM-IC (Shi et al.,
2023a) appends irrelevant sentences to arithmetic
questions but lacks control over distractor struc-
ture or complexity. GSMIR (Jiang et al., 2024)
and MPN (Song and Tavanapong, 2024) use hand-
crafted prompting strategies to mitigate the effects
of textual noise. Anantheswaran et al. (2024) gen-
erate adversarial math problems by adding irrel-
evant variables, showing significant performance
drops and partial robustness gains through fine-
tuning. However, their hand-crafted distractors risk
introducing bias and lack structural control. Other
studies, such as Wu et al. (2024), show that seman-
tically similar but irrelevant documents can impair

LLM performance in retrieval settings. While these
works expose LLMs’ sensitivity to IC, they provide
limited control over distractor properties. In con-
trast, GSM-DC injects distractors into symbolic rea-
soning graphs, enabling stepwise evaluation. We
further show that a reward-guided beam search im-
proves robustness beyond standard fine-tuning.

Understanding LLM Reasoning LLM reason-
ing has received growing attention, leading to
diverse efforts to improve performance on com-
plex tasks. Recently, synthetic benchmarks such
as GSM-∞ (Zhou et al., 2025) and iGSM (Ye
et al., 2024) explored LLM reasoning under long-
context and complex distractors. Unlike GSM-∞
and iGSM, our GSM-DC explicitly controls irrele-
vant distractors within symbolic DAGs to system-
atically quantify the effects of irrelevant context.
Hao et al. (2024) introduced AutoRace and the
LLM Reasoners library to standardize reasoning
evaluation. CoT prompting and in-context learn-
ing have been shown to enhance logical reasoning
(Bertolazzi et al., 2024), while other work high-
lights limitations in handling strict deductions (Li
et al., 2024). Recent methods such as ReAct (Yao
et al., 2023c), Tree-of-Thoughts (Yao et al., 2023b),
and self-consistency decoding (Wang et al., 2023)
guide intermediate steps to improve solution qual-
ity. Beyond final-answer supervision, Process Re-

ward Models (PRMs) (Uesato et al., 2022; Light-
man et al., 2024; Zheng et al., 2024; Kumar et al.,
2024; Hosseini et al., 2024) evaluate partial rea-
soning paths to promote more robust, interpretable,
and aligned multi-step reasoning. Finally, Shi et al.
(2023b) showed that few-shot abduction boosts gen-
eralization with minimal supervision.

3 The GSM-DC Dataset

To systematically investigate how LLMs reason un-
der irrelevant context (IC), we require a framework
that satisfies three desiderata: 1) fine-grained ma-
nipulation of IC, 2) precise control over reasoning
difficulty, and 3) automatic evaluation of reasoning
robustness. Existing datasets (§2) like GSM-IC
are manually built and rely on free-form outputs,
lacking structural constraints and making stepwise
evaluation impractical without manual checks.

We propose the Grade School Math with Dis-
tracting Context (GSM-DC) benchmark—a con-
trolled framework for systematically evaluating
LLMs’ reasoning under irrelevant context that
meets the above criteria. Each math word problem
in GSM-DC is represented as a directed acyclic
graph (DAG), which allows us to 1) explicitly con-
trol irrelevant context by injecting distracting nodes
and edges, 2) explicitly control reasoning difficulty
by adjusting the graph size, and 3) automatically
compute stepwise reasoning correctness by compar-
ing model predictions to the ground-truth reasoning
path. As illustrated in Figure 1, we construct the
GSM-DC dataset in three steps:
1) Dependency Graph Construction (§3.1): To
represent a math word problem, we build a sym-
bolic dependency graph G to capture the direct,
implicit, and instance-level dependencies in the
problem. We then identify a single correct reason-
ing path P from the graph G via topological sort.
2) Irrelevant Context Injection (§3.2): We turn
all nodes outside the reasoning path P into dis-
tractors, producing an augmented graph G′. This
allows us to explicitly control the problem com-
plexity (e.g., number of reasoning steps) and the
intensity of irrelevant context (e.g., via the number
and connectivity of distractor nodes).
3) Natural Language Realization (§3.3): We
then convert the augmented graph G′ into a human-
understandable math word problem M by mapping
each node to a real-world entity and rendering each
edge into a statement. The ground-truth solution S
is then derived from the original reasoning path P .

As a result, each problem in the GSM-DC is
represented as (G′, M, P , S). This structured rep-
resentation enables automatic stepwise evaluation
(§3.4) of LLMs’ reasoning chain via the ground-
truth path P . In the following, we will introduce
the dataset construction pipeline in detail.

3.1 Dependency Graph Construction
Many grade-school math or logical reasoning prob-
lems involve quantities that are interrelated in var-
ious ways. These dependencies typically fall into
three categories: 1) Direct dependencies, where
one quantity is computed directly from another
(e.g., if R denotes the radius of a circle and T its
diameter, then T = 2×R); 2) Instance dependen-
cies, one entity is automatically reliant on another
without explicitly stating that reliance. (e.g., “Each
shelf holds M books, and there are N shelves”) and
3) Implicit dependencies, requiring aggregation or
inference over multiple quantities (e.g., grouping
cats and dogs as animals).

To model these interrelations, we use the di-
rected acyclic graph (DAG), denoted as G, where
each node denotes a quantity (e.g., Bob’s pens)
and each edge represents the dependency between
quantities (e.g., Alice has one more pen than Bob).
We name G as the dependency graph. We use DAG
because the acyclicity ensures that no quantity de-
pends on itself, allowing a valid solution path P to
be recovered via topological sort.

This structured graph-based representation
forms the foundation for controlling reasoning
complexity and enables injection of irrelevant con-
text without affecting the original solution path P .
Given inputs—reasoning steps rs, maximum edges
E and distractor count m—we generate a DAG by
sampling nodes and edges, then extract the solution
path P of length rs via topological sort, and finally
inject m controllable distractors (§3.2).

3.2 Irrelevant Context Injection
To create a problem with irrelevant information,
we augment the dependency graph by injecting dis-
tractor nodes while preserving the original solution
path. As illustrated in Figure 2 and described in Al-
gorithm 1, we start with a clean dependency graph
G and its solution path P . Unused nodes, which
are not part of P , are selected and connected to ex-
isting nodes through forward-only edges, resulting
in a new graph G′ that remains acyclic.

Problem difficulty is primarily controlled by the
number of reasoning steps rs. To limit the prob-

Algorithm 1 INJECTDISTRACTORS (Figure 2)
Require: Directed acyclic graph G, solution path P
Ensure: Augmented graph G′ with P preserved
1: G′ ← G ▷ work on a copy
2: R← UNUSEDPARAMETERS(G′,P)
3: whileR ̸= ∅ do
4: Sample batch B ⊆ R with |B| = m
5: for all χ ∈ B do
6: R← R \ {χ}; n← NEWNODE(χ)
7: ADDNODE(G′, n) ▷ n is now a distractor
8: if ISUNIQUETARGET(χ) then
9: LABELINDEPENDENT(n) ▷ n has no parents

10: continue
11: end if
12: Choose parent set P ∈ {I, C} with prob q
13: ADDEDGESFORWARD(G′, n,P, ρ)
14: LABELCOMPUTED(n)
15: end for
16: end while
17: return (G′, P)

lem complexity across instances, we constrain the
input DAG G to have at most E edges. Given
such a fixed-scale graph and its solution path P ,
we inject m distractor nodes (none of which lie
on P) to produce the augmented graph G′ (Al-
gorithm 1). Importantly, because the total graph
scale is bounded by E, longer reasoning steps oc-
cupy more of the graph structure, leaving fewer
nodes and edges available for distractor injection.
We vary m ∈ [mmin,mmax] to define three dis-
tractor intensity levels (e.g., for rs = 2, light
uses m ∈ [0,2], medium m ∈ [3,4], hard m ≥
5). To ensure equal-sized noise levels, we com-
pute the empirical CDF of distractor levels zi as
F̂z(t) = 1

M

∑M
i=1 I(zi ≤ t) and select m = τk

with F̂z(τk) = k
N for k ∼ Uniform{1, . . . ,N}.

You can see the full details are in Appendix B.

1

𝚨

𝑩

𝑪

𝑫

𝑭

𝑬

𝚨

𝑩

𝑪

𝑫

𝑬

+ Arts Campus's
Seafood

Supermarket

Engineering
Campus's T&T

Supermarket
×

+

+

+

The number of each Arts Campus's T&T Superm-
arket equals 3. The number of each Engineering C-
ampus's T&T Supermarket equals 4. The number of
each Science Park's Zion Market equals 1 more t-
han each Arts Campus's T&T Supermarket. The
number of ea-ch Arts Campus's Seafood Supermark-
et equals the sum of each Science Park's Zion Mark-
et, Arts Campus's T&T Supermarket and each Arts
Campus's Meat Market. The number of each Arts
Campus's Meat Market equals 4 times as much as
each Science Park's Zion Market.
How many Meat Market does Arts Campus have?

Ground-Truth Solution

Math Word Problem

Define Arts Campus's T&T Supermarket as 𝛼; so 𝑎 =
3 . Define Science Park's Zion Market as 𝑒; so 𝑒 = 𝑎
+1 = 3 + 1 = 4. Define Arts Campus's Meat Market
as 𝑒; so r = 𝑒 × 4 = 4 × 4 = 1.

Arts Campus's
T&T Supermarket

Science Park's
Zion Market

Arts Campus's
Meat Market

Figure 2: Distractor construction in GSM-DC. After
generating a DAG, we retain only the original topologi-
cal path used in the solution (A → B → C). Distractor
nodes are constructed by adding forward edges from so-
lution nodes to unused parameters, preserving acyclicity.
Since we control which unused parameters are included
and their dependencies, D is the sum of A, B and C; E
becomes an independent variable; F is excluded entirely.

3.3 Natural Language Realization

Once the dependency graph G is constructed and
augmented as G′, we instantiate it into natural lan-
guage. Each node is mapped to an entity (e.g., “Arts
Campus’s T&T Supermarket”) from the hierarchi-
cal entity vocabulary of the GSM8K dataset, and
each edge is rendered using a templated relational
statement (e.g., “the number of Zion Markets is 1
more than the number of T&T Supermarkets”)2.
These templates capture the underlying dependen-
cies while maintaining simple, readable language.

To form the math problem M, we concatenate
natural-language realizations of edges along the
solution path, ending with a question about the
final node. Distractors are rendered as unrelated
sentences and shuffled with relevant content.

Alongside the natural language (NL) problem
M, we generate its corresponding NL solution S
based on the ground-truth reasoning path P . The
solution S sequentially defines variables for each
node along the path P and applies the dependencies.
An example of the NL problem is given in Figure 3.

The number of each Arts Campus' T&T Supermarket equals 3.
The number of each Engineering Campus' T&T Supermarket equals 4.
The number of each Science Park's Zion Market equals 1 more than
each Arts Campus' T&T Supermarket. The number of each Arts
Campus' Seafood Supermarket equals the sum of each Science Park's
Zion Market, Arts Campus' T&T Supermarket and each Arts Campus'
Meat Market. The number of each Arts Campus' Meat Market
equals 4 times as much as each Science Park's Zion Market.
How many Meat Market does Arts Campus have?

Ground-Truth Solution

Math Word Problem

Define Arts Campus's T&T Supermarket as 𝛼; so 𝑎 = 3 . Define
Science Park's Zion Market as 𝑒; so 𝑒 = 𝑎 + 1 = 3 + 1 = 4. Define
Arts Campus's Meat Market as 𝑒; so r = 𝑒	×	4 = 4	×	4 = 1.

Figure 3: The final reasoning problem constructed from
the example in Figure 2. Irrelevant contexts are in red3.

The generated natural language solution pro-
vides a templated Chain-of-Thought (CoT) reason-
ing trace, which can be parsed to automatically
evaluate the stepwise reasoning correctness.

3.4 Stepwise Solution Evaluator

After constructing GSM-DC, we build a stepwise
solution evaluator to automatically evaluate LLM-
generated solutions. For each problem and pre-
dicted solution, we report three binary scores; for

2We adopt the hierarchical entity vocabulary and templated
relational statements introduced in (Ye et al., 2024).

3We consider arithmetics mod 5 to avoid errors from com-
putation involving large numbers. LLMs can handle arithmetic
via external tools (Schick et al., 2023; Paranjape et al., 2023).

each, a value of 1 is awarded only when the stated
criterion is fully satisfied.
• Step Accuracy (SAcc): Our symbolic parser
reads the model’s chain-of-thought and executes
every intermediate equation in topological order.
SAcc = 1 iff all equations are arithmetically correct
and each step references only symbols that have
already been defined. This strict all-or-nothing
formulation avoids inflating performance with par-
tially correct derivations.
• Path Accuracy (PAcc): To quantify distraction
robustness we check whether the model confines
its reasoning to the augmented dependency graph
G′ after injecting irrelevant context. PAcc = 1 iff (i)
no extraneous nodes appear and (ii) every required
dependency is present—regardless of which arith-
metic operator it applies. PAcc is a relaxation of
SAcc as it only requires stepwise reasoning to be
correct, but not the associated values themselves.
• Extraction Answer Accuracy (EAcc): To
capture final-answer correctness, EAcc = 1 iff
the model’s extracted answer exactly matches the
ground truth. We report EAcc only for prompting,
but our focus remains on SAcc and PAcc.

We evaluate these metrics over a large set of
problems and report each as the percentage (%) of
instances achieving a score of 1.

4 Experiments

4.1 Impact of Irrelevant Context
To systematically analyze how irrelevant context
(IC) affects LLM reasoning, we conduct controlled
experiments by injecting varying numbers of irrele-
vant context (m = 1–15) into math word problems
M drawn from GSM-DC (§3). We evaluate per-
formance across four levels of reasoning steps, de-
noted rs ∈ {2, 3, 4, 5}, and sample 100 instances
per condition to ensure statistical stability.

We benchmark six models: Grok-3-Beta, GPT-
4.1, GPT-4o-mini, LLaMA-3.3-70B, LLaMA-3.1-
8B and LLaMA-3.2-1B. We employ a five-shot
prompting strategy enhanced with a structured
Background section (Appendix A.2) that explic-
itly encodes relevant dependencies to guide reason-
ing. Model performance is assessed using three
metrics using Stepwise Solution Evaluator, SAcc,
PAcc and EAcc, which together capture reasoning
correctness, robustness to distractors, and output
correctness (§3.4). This decomposition allows us to
isolate the specific ways in which irrelevant context
degrades model performance.

Result I: LLMs’ reasoning performance de-
grades with increasing irrelevant context.

As shown in Figure 4, all six models exhibit a
clear degradation in reasoning accuracy as the num-
ber of irrelevant context increases. For instance,
at a fixed reasoning depth of rs=5, Grok-3-Beta’s
step accuracy drops from 43% with one irrelevant
context to just 19% under fifteen irrelevant context.
GPT-4.1 exhibits an even steeper decline at the
same depth, falling from 26% to 2%.

All three evaluation metrics—step accuracy
(SAcc), path accuracy (PAcc), and extraction ac-
curacy (EAcc)—exhibit similar downward trends
as irrelevant context increases. Extraction accu-
racy (EAcc) remains relatively high, because our
solution parser enforces a strict Chain-of-Thought
format (§3.4) that models learn to follow through
five-shot prompting. As a result, EAcc is less sen-
sitive to distraction compared to SAcc and PAcc,
which more directly assess reasoning fidelity and
resistance to irrelevant information.

Result II: Irrelevant context degrades accu-
racy more steeply at greater reasoning depths.

To analyze how irrelevant context (IC) interacts
with reasoning complexity, we study the error rate
E(m; rs) as a function of distractor count m and
reasoning depth rs. We find it roughly follows a
power-law trend: E(m; rs) ∝ mδ(rs), where δ(rs)
reflects a model’s IC sensitivity. As shown in Fig-
ure 4, error increases with m, and the degradation
steepens with deeper reasoning.

For instance, Grok-3-Beta’s exponent grows
from δ ≈ 0.11 at rs=2 to δ ≈ 0.49 at rs=5,
indicating greater vulnerability at deeper depths.
GPT-4.1 shows a similar slope but higher base-
line error, suggesting that reasoning depth governs
δ(rs), while model capacity sets the vertical inter-
cept—i.e., robustness under minimal distraction.
These findings highlight the need to jointly con-
sider reasoning complexity and IC sensitivity when
designing robust LLMs.

4.2 Training with Different Strategies

The results so far focus on inference-time behav-
ior: models are prompted to reason through irrele-
vant context (IC) without being explicitly trained
on it. However, since we do not have access to
the original training data of these models, it is un-
clear whether their observed robustness (or lack

20

40

60

80
Ac

cu
ra

cy
 (%

)
SAcc (Grok 3 Beta)

20

40

60

80
PAcc (Grok 3 Beta)

60

70

80

90

EAcc (Grok 3 Beta)

0

20

40

60

Ac
cu

ra
cy

 (%
)

SAcc (GPT 4.1)

0

20

40

60
PAcc (GPT 4.1)

40

60

80

EAcc (GPT 4.1)

1 3 5 7 9 11 13 15
Irrelevant Context

0

20

40

60

Ac
cu

ra
cy

 (%
)

SAcc (GPT-4o-mini)

1 3 5 7 9 11 13 15
Irrelevant Context

0

20

40

60

PAcc (GPT-4o-mini)

1 3 5 7 9 11 13 15
Irrelevant Context

50

60

70

80
EAcc (GPT-4o-mini)

20

40

60

Ac
cu

ra
cy

 (%
)

SAcc (Llama 3.3-70B)

20

40

60
PAcc (Llama 3.3-70B)

60

80

100
EAcc (Llama 3.3-70B)

0

5

10

15

Ac
cu

ra
cy

 (%
)

SAcc (LLaMA-3.1-8B)

0

5

10

15

PAcc (LLaMA-3.1-8B)

40

60

80
EAcc (LLaMA-3.1-8B)

1 3 5 7 9 11 13 15
Irrelevant Context

0
2
4
6
8

Ac
cu

ra
cy

 (%
)

SAcc (Llama 3.2-1B)

1 3 5 7 9 11 13 15
Irrelevant Context

0

5

10

PAcc (Llama 3.2-1B)

1 3 5 7 9 11 13 15
Irrelevant Context

30

40

50

EAcc (Llama 3.2-1B)

Figure 4: Step-wise accuracy under increasing irrelevant context (IC) for four models, evaluated across reasoning
steps rs ∈ {2,3,4,5}. We adopt a 5-shot prompting strategy with background information. Each curve corresponds
to a specific reasoning step: blue for rs = 2, green for rs = 3, orange for rs = 4, and red for rs = 5 .

thereof) stems from genuine generalization or inci-
dental exposure to similar patterns during pretrain-
ing. To disentangle this, we perform controlled
experiments that explicitly expose models to vary-
ing degrees of IC and reasoning complexity.

First, we conduct controlled experiments on
GSM-DC with varying reasoning steps. We first
mimic the distribution in GSM-IC by training on
examples with 2–7 reasoning steps, then evaluate
on harder problems with up to 22 steps. As shown
in Appendix C, performance drops sharply once the
test depth exceeds the training horizon, suggesting
that models fail to generalize if they trained with
shallow reasoning samples.

To address this, we expand the training set to
include examples up to rs=15, ensuring exposure
to both long reasoning chains and varying levels
of irrelevant context. All finetuned models in this
section are trained on this broader distribution and
evaluated on both in-distribution (rs ≤ 15) and
out-of-distribution (rs > 15) samples.

Result III: Continued pretraining enhances
robustness even without access to IC samples.

Building on this controlled training setup, we
investigate how different finetuning strategies af-
fect reasoning robustness under irrelevant context.
Specifically, we compare continued pretraining
(full finetuning) and LoRA finetuning for reasoning
robustness using a 30K-sample training set, which
we select based on empirical scaling trends ana-
lyzed in Appendix E. As shown in Figure 5, con-

5 10 15 20
Reasoning Steps (rs)

0

20

40

60

80

100
St

ep
 A

cc
ur

ac
y

(%
)

Clean-LoRA
Clean-Full
IC-LoRA
IC-Full

Figure 5: Step accuracy of models trained with Non-IC
or IC data using LoRA or continued pretraining.

tinued pretraining confers strong robustness even
without IC supervision, substantially outperform-
ing LoRA on clean data. With IC training, the
gap narrows, but continued pretraining remains
consistently more robust across reasoning depths.
Based on this, we fixed continued pretraining 30K-
samples for all subsequent experiments.

4.3 Control of Training Data

Result IV: Training with Irrelevant Context
Improves Robustness Most Effectively.

As shown in Table 1, the model trained on IC
consistently achieves the highest SAcc and PAcc
across all rs. The model trained on Clean+IC data
performs slightly worse, while the Non-IC model
lags behind both. These results suggest that train-
ing solely on IC leads to stronger robustness, be-

rs Clean Clean+IC IC

SAcc PAcc SAcc PAcc SAcc PAcc

≤ 15 35.9 41.3 70.0 71.2 73.2 74.7
16 22.0 22.7 32.0 32.0 33.3 33.3
17 21.0 21.0 23.0 23.0 20.7 21.3
18 13.0 13.0 15.7 15.7 16.7 16.7
19 13.7 13.7 13.3 13.3 15.0 15.0
20 9.0 9.0 8.3 8.3 10.0 10.0
21 7.7 7.7 8.7 8.7 5.7 5.7
22 6.0 6.0 5.3 5.3 6.3 6.3

Table 1: Comparison of SAcc and PAcc under different
training regimes: Clean, Clean+IC, and IC.

cause of increased exposure to IC during learning.
The clean model performs worse on questions

with IC, even under in-distribution (ID) settings.
To better understand this limitation, we examine
the gap ∆(SACC, PACC), represented as the ratio
between SAcc and PAcc (Figure 6). A lower ratio
indicates a larger gap—arithmetic errors occurring
even when the reasoning path is correct. The model
trained on Clean data consistently shows a higher
∆, suggesting that IC affects not only reasoning
path selection, but also arithmetic execution. These
findings reveal that IC broadly disrupts reasoning,
and that training with IC-injected examples leads
to more robust models.

2 7 12 17 22
Reasoning Steps (rs)

0.88

0.90

0.93

0.95

0.98

1.00

SA
cc

 /
PA

cc
 R

at
io

Clean-LoRA
Clean-Full
IC-LoRA
IC-Full

Figure 6: Step accuracy (%) for models trained with
Clean or IC using LoRA or continued pretraining.

Result V: Training with challenging irrelevant
context leads to the strongest robustness and gen-
eralization across all pretraining settings.

Having established that exposure to irrelevant
context during training improves robustness, we
now investigate whether the intensity of such con-
text further influences generalization. In particular,
we test whether training on harder, more distracting
IC leads to greater robustness on out-of-distribution

(OOD) reasoning problems. Based on the method
described in §3, we construct two main versions of
the GSM-DC benchmark for evaluation:

GSM-DC-Clean: For each reasoning step rs ∈
[2, 22]∩Z, we sample 300 clean dependency graphs
without injecting any IC. Each graph contains a
unique solution path P and no distractor nodes.
This clean subset comprises 6,300 math problems.

GSM-DC-with-IC: To study robustness under
IC, we generate IC variants of the clean graphs by
injecting distractors following the procedure (§3.2).
For each reasoning step, we sample 100 graphs
under each of three IC intensity levels: LIGHT-IC,
MEDIUM-IC, and HARD-IC, while keeping the
reasoning path P fixed. Each subset thus contains
2,100 problems (100 per step), resulting in a total
of 6,300 problems across all IC levels.

To evaluate how IC difficulty affects training, we
compare five regimes: CLEAN, LIGHT / MEDIUM

/ HARD-IC, and MIX-IC. As shown in Table 2 and
Table 3, HARD-IC yields the best SAcc across all
in-distribution and OOD settings, regardless of IC
presence or difficulty.

Training
Noise Level

Testing w/ IC (SAcc) Testing w/o IC (SAcc)

ID OOD All ID OOD All

CLEAN 35.91 13.19 32.36 81.95 17.05 60.32
LIGHT-IC 64.79 6.90 46.57 67.33 7.09 46.56
MEDIUM-IC 65.79 7.23 47.44 69.39 9.95 50.38
HARD-IC 77.95 18.57 59.48 82.30 19.86 61.21
MIX-IC 73.23 15.33 57.86 78.09 15.62 57.38

Table 2: Step Accuracy (%) under different training IC
difficulties, evaluated across test IC conditions.

These findings indicate that exposure to adding
challenging distractors (HARD-IC) is the most ef-
fective training strategy for enhancing model ro-
bustness and generalization performance. Intrigu-
ingly, MIX-IC, despite incorporating distractor di-
versity, consistently underperformed HARD-IC,
suggesting that distractor difficulty, rather than va-
riety, is the primary driver of improvement. The
advantage of HARD-IC over NON-IC, particularly
under test-time IC conditions, further reinforces the
utility of IC augmentation, specifically with high-
difficulty examples, for fostering robust reasoning.

5 Improving Model Robustness Against
Irrelevant Context

The previous section (§4) demonstrate that LLMs
are highly sensitive to irrelevant context (IC), and

Training
IC Level

ID Test SAcc OOD Test SAcc

Light Medium Hard Light Medium Hard

LIGHT-IC 67.21 66.57 60.57 8.14 7.29 5.28
MEDIUM-IC 68.14 66.07 63.14 8.71 8.43 4.57
HARD-IC 78.36 79.21 76.28 22.7 18.43 14.57
MIX-IC 74.71 75.07 69.93 17.7 16.57 11.28

Table 3: Step Accuracy (%) per test IC difficulty. All
models are trained with a specific IC difficulty.

that continued pretraining with challenging IC-
injected examples alone can substantially improve
robustness. However, even with the strongest con-
tinued pretraining configurations (e.g., HARD-IC),
model performance still degrades significantly on
out-of-distribution (OOD) reasoning steps. This
raises the question of how robustness can be fur-
ther improved at test time.

The number of Bob’s oranges are 4. The number of Alice’s bananas equals
the number of Bob’s oranges. How many bananas does Alice have?

②: Select top N / M

Define Alice’s
oranges as B;

Define Bob’s
oranges as D;

Define Bob’s
bananas as X;

so D = 4. so B = 3.

Define Alice’s
bananas as L;

so M = 4. so L = 4.
③: Repeat ②

so G = B = 4. so B = G = 3. so B = L = 4. so L = B = 3.

Define Alice’s
apples as B;

Define Alice’s
bananas as G;

Define Bob’s
apples as B;

Define Bob’s
oranges as B;

①: N initial paths
0.89 0.87

0.93

0.790.95

0.98

0.83

0.71

Figure 7: An overview of the ToT algorithm with N = 4
and M = 2. Green nodes indicate those that were
scored highly by the PRM and thus expanded in subse-
quent iterations, while red nodes were not selected as
candidate nodes for the next step. After the algorithm
terminates, the leftmost node is scored the highest and
thus that reasoning path is chosen as the final answer.

Our Tree of Thoughts (ToT) algorithm addresses
complex reasoning problems by combining tree
search with the step-by-step inference capabilities
of large language models (LLMs). As illustrated
in Figure 7, ToT not only uses an LLM to propose
candidate reasoning steps, but also integrates a Pro-
cess Reward Model (PRM) to evaluate and guide
the search process. Given a partial reasoning path
h1:t, the PRM assigns a reward R(h1:t) indicating
the quality of reasoning up to step t. Leveraging
a synthetic dataset, we systematically inject irrele-
vant context (IC) and arithmetic errors into selected
reasoning paths. These negative examples are used
to train the PRM to distinguish valid reasoning tra-
jectories from those corrupted by irrelevant context
(IC) and wrong arithmetic calculations enabling
the model to prioritize more accurate and robust

Training
IC Level

ID SAcc OOD SAcc

w/o w/ ∆ w/o w/ ∆
PRM PRM PRM PRM

LIGHT-IC 64.79 66.10 +1.31 6.90 9.59 +2.69
MEDIUM-IC 65.79 70.05 +4.26 7.23 13.52 +6.29
HARD-IC 77.95 79.48 +1.53 18.57 24.17 +5.60
MIX-IC 73.23 75.81 +2.58 15.33 19.06 +3.73
CLEAN 35.91 36.38 +0.47 13.19 15.76 +2.57

Table 4: The Step Accuracies of the models trained with
different IC levels without and with PRM.

solutions during search.
Through our experiments, we found that the mea-

sured accuracy, both SAcc and PAcc, for the in-
distribution case with and without a PRM were
similar. Furthermore, in the OOD case, the accu-
racy we measured was significantly improved when
a PRM was used. The results suggest that using
a PRM preserves model performance in ID tasks,
while also allowing the model to generalize its re-
sponses to OOD tasks. As can be seen from Table 4,
the model trained with hard IC performs the great-
est, and supplementing it with a PRM significantly
improves its accuracy.

6 Conclusion

We present GSM-DC, a controlled benchmark for
rigorous evaluation and improving the robustness
of LLM reasoning in the presence of systematically
injected irrelevant context (IC). By framing math
problems as symbolic DAGs, GSM-DC enables
precise control over reasoning complexity and dis-
tractor structure, along with automatic stepwise
evaluator. Our experiments reveal that: 1) LLM
accuracy degrades as distractor count increases,
with the error roughly following a power-law trend
whose exponent grows with reasoning depth; 2) IC
affects not only reasoning path selection, but also
arithmetic execution; 3) Training with challenging
IC, combined with continued pretraining, yields
the strongest robustness across both in-distribution
and out-of-distribution settings, consistently out-
performing LoRA finetuning under clean and noisy
conditions. Finally, we show that reasoning ro-
bustness can be further improved at inference time
using beam search with PRM, which boosts OOD
step accuracy by up to 6.29%. Together, these find-
ings position GSM-DC as both a diagnostic tool for
analyzing IC sensitivity and a foundation for devel-
oping robust training and inference time strategies
for language models reasoning.

Limitations

GSM-DC provides a controlled environment for
probing LLM reasoning, combining symbolic
DAGs with natural-language templates inspired
by datasets like iGSM (Ye et al., 2024). To en-
hance linguistic diversity and realism, we designed
a hierarchical vocabulary system derived from
GSM8K (Cobbe et al., 2021) and constructed tem-
plated prompts with varied surface forms. While
this approach balances control and naturalness,
the use of templates still limits full linguistic ex-
pressiveness. To address this, we plan to expand
the benchmark with more diverse natural-language
realizations sampled from real corpora and sup-
port more flexible arithmetic reasoning. The cur-
rent reasoning depth is capped at 22 operations;
we are generating new tiers with 30+ steps to ex-
plore long-horizon compositionality. While we
benchmark six models—Grok-3-Beta, GPT-4.1,
GPT-4o-mini, LLaMA-3.3-70B, LLaMA-3.1-8B,
and LLaMA-3.2-1B—all training experiments are
conducted solely on LLaMA-3.2-1B using a 30K-
sample dataset (see Appendix E) due to computa-
tional constraints. Future work will scale to larger
models to test robustness across capacities. To
generalize our Process Reward Model and Tree-of-
Thoughts framework, we will retrain the PRM on
external reasoning datasets (e.g., ProofWriter, Strat-
egyQA) and benchmark adaptive beam heuristics.
Finally, we aim to include faithfulness and bias
diagnostics—such as explanation consistency and
demographic sensitivity—to ensure that robustness
gains translate into safe and trustworthy reasoning.

Ethics Statement

This research uses only synthetic data and does
not involve human subjects or sensitive informa-
tion. All models and experiments comply with the
licenses of publicly available tools. We support
responsible AI research and have prioritized trans-
parency and reproducibility throughout this work.

References

Zeyuan Allen-Zhu and Yuanzhi Li. 2024a. Physics
of language models: Part 1, learning hierarchical
language structures. Preprint, arXiv:2305.13673.

Zeyuan Allen-Zhu and Yuanzhi Li. 2024b. Physics of
language models: Part 3.2, knowledge manipulation.
Preprint, arXiv:2309.14402.

Zeyuan Allen-Zhu and Yuanzhi Li. 2024c. Physics
of language models: Part 3.3, knowledge capacity
scaling laws. Preprint, arXiv:2404.05405.

Ujjwala Anantheswaran, Himanshu Gupta, Kevin
Scaria, Shreyas Verma, Chitta Baral, and Swaroop
Mishra. 2024. Cutting through the noise: Boost-
ing llm performance on math word problems. arXiv
preprint arXiv:2406.15444.

Lukas Berglund, Meg Tong, Max Kaufmann, Mikita
Balesni, Asa Cooper Stickland, Tomasz Korbak,
and Owain Evans. 2024. The reversal curse: Llms
trained on "a is b" fail to learn "b is a". Preprint,
arXiv:2309.12288.

Leonardo Bertolazzi, Albert Gatt, and Raffaella
Bernardi. 2024. A systematic analysis of large lan-
guage models as soft reasoners: The case of syllo-
gistic inferences. In Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2024, Miami, FL, USA, Novem-
ber 12-16, 2024, pages 13882–13905. Association
for Computational Linguistics.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Barbara A. Eriksen and Charles W. Eriksen. 1974. Ef-
fects of noise letters upon the identification of a tar-
get letter in a nonsearch task. Perception & Psy-
chophysics, 16:143–149.

Shibo Hao, Yi Gu, Haotian Luo, Tianyang Liu, Xiyan
Shao, Xinyuan Wang, Shuhua Xie, Haodi Ma,
Adithya Samavedhi, Qiyue Gao, Zhen Wang, and
Zhiting Hu. 2024. LLM reasoners: New evaluation,
library, and analysis of step-by-step reasoning with
large language models. CoRR, abs/2404.05221.

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron C.
Courville, Alessandro Sordoni, and Rishabh Agar-
wal. 2024. V-star: Training verifiers for self-taught
reasoners. CoRR, abs/2402.06457.

Jie Huang, Xinyun Chen, Swaroop Mishra,
Huaixiu Steven Zheng, Adams Wei Yu, Xiny-
ing Song, and Denny Zhou. 2024. Large language
models cannot self-correct reasoning yet. Preprint,
arXiv:2310.01798.

Ming Jiang, Tingting Huang, Biao Guo, Yao Lu, and
Feng Zhang. 2024. Enhancing robustness in large lan-
guage models: Prompting for mitigating the impact
of irrelevant information. CoRR, abs/2408.10615.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su,
John D. Co-Reyes, Avi Singh, Kate Baumli, Shariq
Iqbal, Colton Bishop, Rebecca Roelofs, Lei M.
Zhang, Kay McKinney, Disha Shrivastava, Cosmin
Paduraru, George Tucker, Doina Precup, Feryal M. P.
Behbahani, and Aleksandra Faust. 2024. Training

https://arxiv.org/abs/2305.13673
https://arxiv.org/abs/2305.13673
https://arxiv.org/abs/2305.13673
https://arxiv.org/abs/2309.14402
https://arxiv.org/abs/2309.14402
https://arxiv.org/abs/2404.05405
https://arxiv.org/abs/2404.05405
https://arxiv.org/abs/2404.05405
https://arxiv.org/abs/2309.12288
https://arxiv.org/abs/2309.12288
https://aclanthology.org/2024.emnlp-main.769
https://aclanthology.org/2024.emnlp-main.769
https://aclanthology.org/2024.emnlp-main.769
https://api.semanticscholar.org/CorpusID:12012872
https://api.semanticscholar.org/CorpusID:12012872
https://api.semanticscholar.org/CorpusID:12012872
https://doi.org/10.48550/ARXIV.2404.05221
https://doi.org/10.48550/ARXIV.2404.05221
https://doi.org/10.48550/ARXIV.2404.05221
https://doi.org/10.48550/ARXIV.2402.06457
https://doi.org/10.48550/ARXIV.2402.06457
https://arxiv.org/abs/2310.01798
https://arxiv.org/abs/2310.01798
https://doi.org/10.48550/ARXIV.2408.10615
https://doi.org/10.48550/ARXIV.2408.10615
https://doi.org/10.48550/ARXIV.2408.10615
https://doi.org/10.48550/ARXIV.2409.12917

language models to self-correct via reinforcement
learning. CoRR, abs/2409.12917.

Aitor Lewkowycz, Eric Zelikman, Ran Tao, Tat-
sunori Hashimoto, John Schulman, Xinyun Chen,
C Lawrence Zitnick, Christopher D Manning, Daniel
Saunders, Adam Santoro, et al. 2022. Solving quan-
titative reasoning problems with language models.
arXiv preprint arXiv:2206.14858.

Zhiming Li, Yushi Cao, Xiufeng Xu, Junzhe Jiang,
Xu Liu, Yon Shin Teo, Shang-Wei Lin, and Yang
Liu. 2024. Llms for relational reasoning: How far
are we? In LLM4CODE@ICSE, pages 119–126.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2024. Let’s verify step by step. In The Twelfth In-
ternational Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. Open-
Review.net.

Bhargavi Paranjape, Scott Lundberg, Sameer Singh,
Hannaneh Hajishirzi, Luke Zettlemoyer, and
Marco Tulio Ribeiro. 2023. Art: Automatic multi-
step reasoning and tool-use for large language mod-
els. Preprint, arXiv:2303.09014.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
Preprint, arXiv:2302.04761.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan
Scales, David Dohan, Ed H. Chi, Nathanael Schärli,
and Denny Zhou. 2023a. Large language models can
be easily distracted by irrelevant context. In Interna-
tional Conference on Machine Learning, ICML 2023,
23-29 July 2023, Honolulu, Hawaii, USA, volume
202 of Proceedings of Machine Learning Research,
pages 31210–31227. PMLR.

Xiaoming Shi, Siqiao Xue, Kangrui Wang, Fan Zhou,
James Y. Zhang, Jun Zhou, Chenhao Tan, and
Hongyuan Mei. 2023b. Language models can im-
prove event prediction by few-shot abductive reason-
ing. In Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Informa-
tion Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10 - 16, 2023.

Seok Hwan Song and Wallapak Tavanapong. 2024.
How much do prompting methods help llms on quan-
titative reasoning with irrelevant information? In
Proceedings of the 33rd ACM International Confer-
ence on Information and Knowledge Management,
CIKM 2024, Boise, ID, USA, October 21-25, 2024,
pages 2128–2137. ACM.

Jonathan Uesato, Nate Kushman, Ramana Kumar,
H. Francis Song, Noah Y. Siegel, Lisa Wang, An-
tonia Creswell, Geoffrey Irving, and Irina Higgins.
2022. Solving math word problems with process- and
outcome-based feedback. CoRR, abs/2211.14275.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. 2023. Self-consistency
improves chain of thought reasoning in language
models. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Siye Wu, Jian Xie, Jiangjie Chen, Tinghui Zhu, Kai
Zhang, and Yanghua Xiao. 2024. How easily do
irrelevant inputs skew the responses of large language
models? CoRR, abs/2404.03302.

Wenda Xu, Guanglei Zhu, Xuandong Zhao, Liang-
ming Pan, Lei Li, and William Yang Wang. 2024.
Pride and prejudice: Llm amplifies self-bias in self-
refinement. Preprint, arXiv:2402.11436.

Shinn Yao, Jeffrey Zhao, Dian Yu, Izhak Zhao, Yujia
Yu, Eric Gao, Maarten Bosma, Yi Wang, and Denny
Zhou. 2023a. Tree of thoughts: Deliberate problem
solving with large language models. arXiv preprint
arXiv:2305.10601.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2023b. Tree of thoughts: Deliberate problem solving
with large language models. In Advances in Neural
Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R. Narasimhan, and Yuan Cao.
2023c. React: Synergizing reasoning and acting
in language models. In The Eleventh International
Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net.

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-
Zhu. 2024. Physics of language models: Part 2.1,
grade-school math and the hidden reasoning process.
CoRR, abs/2407.20311.

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji
Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jin-
gren Zhou, and Junyang Lin. 2024. Processbench:
Identifying process errors in mathematical reasoning.
CoRR, abs/2412.06559.

Xuezhi Zhou, Nathanael Schärli, Luheng Hou, Jason
Wei, Swaroop Mishra, Xinyun Huang, Quoc Le,
Hyung Won Chung, Hieu Pham, Barret Zoph, et al.
2022. Least-to-most prompting enables complex rea-
soning in large language models. arXiv preprint
arXiv:2205.10625.

Yang Zhou, Hongyi Liu, Zhuoming Chen, Yuandong
Tian, and Beidi Chen. 2025. Gsm-infinite: How
do your llms behave over infinitely increasing con-
text length and reasoning complexity? CoRR,
abs/2502.05252.

https://doi.org/10.48550/ARXIV.2409.12917
https://doi.org/10.48550/ARXIV.2409.12917
https://doi.org/10.1145/3643795.3648387
https://doi.org/10.1145/3643795.3648387
https://openreview.net/forum?id=v8L0pN6EOi
https://arxiv.org/abs/2303.09014
https://arxiv.org/abs/2303.09014
https://arxiv.org/abs/2303.09014
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://proceedings.mlr.press/v202/shi23a.html
https://proceedings.mlr.press/v202/shi23a.html
http://papers.nips.cc/paper_files/paper/2023/hash/5e5fd18f863cbe6d8ae392a93fd271c9-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/5e5fd18f863cbe6d8ae392a93fd271c9-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/5e5fd18f863cbe6d8ae392a93fd271c9-Abstract-Conference.html
https://doi.org/10.1145/3627673.3679840
https://doi.org/10.1145/3627673.3679840
https://doi.org/10.48550/ARXIV.2211.14275
https://doi.org/10.48550/ARXIV.2211.14275
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://doi.org/10.48550/ARXIV.2404.03302
https://doi.org/10.48550/ARXIV.2404.03302
https://doi.org/10.48550/ARXIV.2404.03302
https://arxiv.org/abs/2402.11436
https://arxiv.org/abs/2402.11436
http://papers.nips.cc/paper_files/paper/2023/hash/271db9922b8d1f4dd7aaef84ed5ac703-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/271db9922b8d1f4dd7aaef84ed5ac703-Abstract-Conference.html
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://doi.org/10.48550/ARXIV.2407.20311
https://doi.org/10.48550/ARXIV.2407.20311
https://doi.org/10.48550/ARXIV.2412.06559
https://doi.org/10.48550/ARXIV.2412.06559
https://doi.org/10.48550/ARXIV.2502.05252
https://doi.org/10.48550/ARXIV.2502.05252
https://doi.org/10.48550/ARXIV.2502.05252

Content of Appendix

A Dataset Samples
A.1 Training Dataset with Different Level of

IC for Finetuned Model
A.2 Prompts for Closed-Sourced Models

B Empirical Noise Stratification
C Operation-Range Bias and Our Train/Test Pro-

tocol
D Process Reward Models
E Finetuning Details

A Dataset Samples

A.1 Training Dataset with Different IC for
Finetuned Model

For models that have been finetuned on mathemat-
ical reasoning tasks, we provide the question di-
rectly, omitting any system or instruction prompt.

Light-IC Sample (Operations = 2)

▶ Input:
The number of each Arts Campus’s T&T
Supermarket equals 3. The number of each
Science Park’s Zion Market equals 1 more
than each Arts Campus’s T&T Supermarket.
The number of each Engineering Campus’s
Zion Market equals each Engineering
Campus’s T&T Supermarket. How many Zion
Market does Science Park have?

▶ Output:
Define Arts Campus’s T&T Supermarket as e; so e =
3. Define Science Park’s Zion Market as w; so w = e
+ 1 = 3 + 1 = 4.

Medium-IC Sample (Operations = 2)

▶ Input:
The number of each Arts Campus’s T&T
Supermarket equals 3. The number of each
Arts Campus’s La Michoacana Meat Market
equals 4. The number of each Preparatory
School District’s La Michoacana Meat
Market equals 3 more than the difference
of each Science Park’s T&T Supermarket
and each Science Park’s La Michoacana
Meat Market. The number of each Science
Park’s Zion Market equals 1 more than
each Arts Campus’s T&T Supermarket. The
number of each Engineering Campus’s Zion
Market equals each Engineering Campus’s
T&T Supermarket. How many Zion Market does
Science Park have?

▶ Output:
Define Arts Campus’s T&T Supermarket as e; so e =
3. Define Science Park’s Zion Market as w; so w = e
+ 1 = 3 + 1 = 4.

Hard-IC Sample (Operations = 2)

▶ Input:
The number of each Arts Campus’s La
Michoacana Meat Market equals 4. The
number of each Arts Campus’s T&T
Supermarket equals 3. The number of each
Arts Campus’s Seafood City Supermarket
equals 2 more than each Science Park’s Zion
Market. The number of each Preparatory
School District’s Zion Market equals
each Engineering Campus’s Seafood City
Supermarket. The number of each Science
Park’s Seafood City Supermarket equals the
sum of each Science Park’s La Michoacana
Meat Market and each Science Park’s T&T
Supermarket. The number of each Preparatory
School District’s Seafood City Supermarket
equals 4 more than the sum of each Science
Park’s Zion Market, each Arts Campus’s T&T
Supermarket and each Arts Campus’s Seafood
City Supermarket. The number of each Arts
Campus’s Zion Market equals the sum of
each Science Park’s T&T Supermarket, each
Arts Campus’s T&T Supermarket and each
Engineering Campus’s La Michoacana Meat
Market. The number of each Preparatory
School District’s T&T Supermarket equals
4 more than each Engineering Campus’s
Seafood City Supermarket. The number of
each Science Park’s T&T Supermarket equals
4. The number of each Engineering Campus’s
La Michoacana Meat Market equals 0. The
number of each Engineering Campus’s T&T
Supermarket equals 1 times as much as the
difference of each Engineering Campus’s La
Michoacana Meat Market and each Preparatory
School District’s Seafood City Supermarket.
The number of each Engineering Campus’s
Seafood City Supermarket equals 2 times
as much as the sum of each Science Park’s
Seafood City Supermarket, each Science
Park’s La Michoacana Meat Market and each
Science Park’s T&T Supermarket. The number
of each Science Park’s La Michoacana Meat
Market equals 3 times as much as each
Science Park’s T&T Supermarket. The number
of each Preparatory School District’s La
Michoacana Meat Market equals 3 more than
the difference of each Science Park’s T&T
Supermarket and each Science Park’s La
Michoacana Meat Market. The number of each
Science Park’s Zion Market equals 1 more
than each Arts Campus’s T&T Supermarket.
The number of each Engineering Campus’s
Zion Market equals each Engineering
Campus’s T&T Supermarket. How many Zion
Market does Science Park have?

▶ Output:
Define Arts Campus’s T&T Supermarket as e; so e =
3. Define Science Park’s Zion Market as w; so w = e
+ 1 = 3 + 1 = 4.

Non-IC Sample (Operations = 2)

▶ Input:
The number of each Arts Campus’s T&T
Supermarket equals 3. The number of each
Science Park’s Zion Market equals 1 more
than each Arts Campus’s T&T Supermarket.
How many Zion Market does Science Park have?

▶ Output:
Define Arts Campus’s T&T Supermarket as e; so e =
3. Define Science Park’s Zion Market as w; so w = e
+ 1 = 3 + 1 = 4.

A.2 Testing on Closed-Sourced Model

To evaluate closed-source models, we use GPT-4o-
mini to test across all operations. Additionally, we
included a Background from the underlying graph
structure to explicitly tell the model entity rela-
tionships, helping the model construct the correct
reasoning context. Since the model struggles to
learn modular operations, we also embed five-shot
prompting.

5-shots Testing Sample(Operations = 2)

⋆ System:
You’re an expert at solving elementary math
problems involving addition, subtraction,
and multiplication. You solve all the
problems in a uniform format. All
calculations are done modulo 5. For
example, 3 + 2 equals 0, 1 + 1 equals 2, 4
+ 2 + 4 equals 0, 3 * 2 equals 1, and 3 *
1 equals 3. When providing your solution,
please end with ’The final answer is
«x».’ where x is your final answer, an
integer between 0 and 4. You must solve
all the problems using the same solution
format. Our scenarios involve up to four
categories of objects:schools, classrooms,
backpacks and stationeries. Each school
may contain classrooms, each classroom
may contain backpacks, and each backpack
may contain stationeries. We can specify
quantities, such as "the number of dance
studios at each Lakeshore High."

Assume that every entity with the
same name has an identical configuration;
for example, each Lakeshore High contains
the same number of dance studios. Another
guiding principle is that what is not
mentioned does not exist: when we refer
to classrooms at Lakeshore High, we are
only discussing the classrooms explicitly
mentioned in our scenario. Furthermore,
if Lakeshore High is not even mentioned,
any classroom within it is automatically
considered to be non-existent (i.e. 0).

▶ User: ...

▶ Assistant: ...

▶ User: ...
▶ Assistant: ...

▶ User: ...
▶ Assistant: ...

▶ User: ...
▶ Assistant: ...

▶ User: ...
▶ Assistant: ...

▶ User:
Background:
There are 4 types of Zoo: Jurong Bird Park,
Flamingo Gardens, Tracy Aviary, and Avery
Island. There are 4 types of Enclosure:
Ladybug Loft, Dragonfly Delta, Snail
Shellter, and Beetle Bungalow. There are
2 types of Animal: Fire Salamander, and
Newt. There are 3 types of Bone: Tertials,
Secondary Feathers, and Metacarpals. Each
Ladybug Loft’s Fire Salamander can have
Ladybug Loft’s Animal. Each Tracy Aviary’s
Snail Shellter can have Snail Shellter’s
Newt and Ladybug Loft’s Fire Salamander.
Each Snail Shellter’s Newt can have Ladybug
Loft’s Fire Salamander. Each Jurong Bird
Park’s Zoo can have Tracy Aviary’s Snail
Shellter, Snail Shellter’s Newt, and
Ladybug Loft’s Fire Salamander.

The problem description is:
The number of each Snail Shellter’s Newt
equals 4 more than each Tracy Aviary’s
Snail Shellter. The number of each Ladybug
Loft’s Fire Salamander equals 1 times
as much as the difference of each Snail
Shellter’s Newt and each Tracy Aviary’s
Snail Shellter. The number of each Tracy
Aviary’s Snail Shellter equals 4. How many
Animal does Ladybug Loft have?

▶ GPT-4o-mini Predicted Solution: (Incorrect)
Define Tracy Aviary’s Snail Shellter as T; so T = 4.
Define Snail Shellter’s Newt as N; so N = T + 4 = 4 +
4 = 3.
Define Ladybug Loft’s Fire Salamander as F; so F =
N - T = 3 - 4 = 0. [CALCULATION ERROR]
Define Ladybug Loft’s Animal as A; so A = F = 0.

▶ Groud-Truth Solution: (Correct)
Define Tracy Aviary’s Snail Shellter as o; so o = 4.
Define Snail Shellter’s Newt as S; so S = 4 + o = 4 +
4 = 3.
Define Ladybug Loft’s Fire Salamander as s; m = S -
o = 3 - 4 = 4; so s = 1 * m = 1 * 4 = 4.
Define Ladybug Loft’s Animal as H; so H = s = 4.

• Step Accuracy: False
• Path Accuracy: True
• Final Answer Accuracy: False

◀ Failure Reason:
The model correctly selects every relevant entity
and follows the intended dependency chain—first

computing the Newt count N from the Snail Shellter
count T , then deriving the Fire Salamander count F
from N and T , and finally mapping F to the total
Animals—showing no influence from irrelevant
context (Path Accuracy = True). Nonetheless, it
commits a modular–arithmetic error: it evaluates
F = N − T = 3 − 4 as 0 instead of the correct
value 4 under modulo 5.(Step Accuracy = False,
Final Answer Accuracy = False).

B Quantifying Irrelevant Information

To empirically study the impact of irrelevant infor-
mation, we control the number of extraneous nodes
and edges injected into each example (see Table 5).
These irrelevant parameters are randomly sampled
from unused entities in the underlying graph, ensur-
ing they do not alter the correct reasoning path. We
incrementally adjust the number of injected nodes
based on both model performance and problem dif-
ficulty. Notably, when the number of irrelevant
nodes becomes large, model performance drops
significantly. To avoid saturating the model’s ca-
pacity and distorting evaluation, we refrain from
injecting more irrelevant information beyond this
point.

Operation Irrelevant Parameters

Light Medium Hard

op = 2 0–2 3–4 5-
op = 3 0–1 2–4 5–
op = 4 0–1 2–3 4–
op = 5 0–1 2–3 4–
op = 6 0–1 2–3 4–
op = 7 0–1 2–3 4–
op = 8 0–1 2–3 4–
op = 9 0–1 2–2 3–
op = 10 0–1 2–2 3–
op = 11 0–0 1–2 3–
op = 12 0–0 1–2 3–
op = 13 0–0 1–2 3–
op = 14 0–0 1–2 3–
op = 15 0–0 1–2 3–
op = 16 0–0 1–1 2–
op = 17 0–0 1–1 2–
op = 18 0–0 1–1 2–
op = 19 0–0 1–1 2–
op = 20 0–0 1–1 2–
op = 21 0–0 1–1 2–

Table 5: Quantile distribution of extraneous nodes
across different operations.

C Operation-Range Bias in GSM-IC

We found that models trained on problems contain-
ing only a small number of arithmetic operations
tend to overfit short reasoning templates and fail
to extrapolate to longer chains of computation. To

Figure 8: Test accuracy of a model trained on the MIX
≤ 15 set (operation distribution identical to GSM-IC)
when evaluated on OP = 2–22. Accuracy drops sharply
once the required operation count exceeds the training
ceiling.

make this limitation explicit, we adopt exactly the
same operation-count distribution as GSM-IC
for all in-distribution (ID) training examples (OP
= 2–15). Generalisation is then probed with a
held-out out-of-distribution (OOD) slice compris-
ing problems that require sixteen to twenty-two
operations. Figure 8 plots test accuracy against
operation count: performance remains high within
the ID range but deteriorates rapidly once the task
exceeds the training horizon, underscoring the ne-
cessity of our two-tier protocol for a fair assessment
of compositional reasoning.

D Process Reward Model

The Process Reward Model (PRM) we used in our
experiments was trained using responses from an
already fine-tuned model on problems of varying
operation levels. Additionally, we utilized a parser
that would identify exactly at which step of the
LLM’s reasoning chain the first mistake was made.
We segmented the model’s responses by using "."
and ";" as our stop tokens, and labeled each seg-
ment depending on whether it is correct or not as
illustrated below. Wherever the parser identified
an error, that step and all subsequent steps would
receive a negative label [−], while all steps prior
received a positive label [+].

PRM Example with Correct Steps

▶ Problem:
The number of each Coniferous Forest’s Hippopota-
mus equals 2 more than the difference of each
Hippopotamus’s Aortic Valve and each Hippopota-
mus’s Organs. The number of each Tropical Dry
Forest’s Rhinoceros equals 2 more than the sum of
each Coniferous Forest’s Organs, each Rhinoceros’s

Organs and each Hippopotamus’s Cardiac Muscle.
The number of each Hippopotamus’s Aortic Valve
equals 1. The number of each Hippopotamus’s
Cardiac Muscle equals 3 times as much as each
Hippopotamus’s Aortic Valve. How many Organs
does Tropical Dry Forest have?

▶ Responses + Labels:
"Define Hippopotamus’s Aortic Valve as g;" [+]
"so g = 1." [+]
"Define Hippopotamus’s Cardiac Muscle as l;" [+]
"so l = 3 * g = 3 * 1 = 3." [+]
"Define Hippopotamus’s Organs as G;" [+]
"so G = g + l = 1 + 3 = 4." [+]
"Define Coniferous Forest’s Hippopotamus as y;" [+]
"w = g - G = 1 - 4 = 2;’, ’so y = 2 + w = 2 + 2 = 4."
[+]
"Define Coniferous Forest’s Organs as L;" [+]
"so L = y * G = 4 * 4 = 1." [+]
"Define Rhinoceros’s Organs as u;" [+]
"so u = 0." [+]
"Define Tropical Dry Forest’s Rhinoceros as R;" [+]
"s = L + u = 1 + 0 = 1;" [+]
"C = s + l = 1 + 3 = 4;" [+]
"so R = 2 + C = 2 + 4 = 1." [+]
"Define Tropical Dry Forest’s Organs as V;" [+]
"so V = R * u = 1 * 0 = 0." [+]

The use of a synthetic dataset offers two key ad-
vantages: it simplifies the curation of training data
for our Process Reward Model (PRM) and enables
precise control over injected mistakes, allowing us
to label incorrect reasoning steps explicitly. This
was made possible by a solution parser capable of
not only verifying the final answer but also pin-
pointing the exact step where an error occurred.
As a result, we were able to construct high-quality,
fine-grained supervision signals to effectively train
the PRM.

Furthermore, we are able to purposely inject IC
into a given problem due to the synthetic nature of
our dataset. For our experiments, after having con-
structed the directed graph of the correct problem,
we add IC by generating extraneous details and
directly including them within the given problem
statement at various steps. We then pass this new
problem into the LLM to get its response. After-
wards, we pass the LLM’s response into our parser
and it can identify the presence of and type of error
that was made. Examples of errors include, but
are not limited to, arithmetic errors, definitions of
irrelevant/non-existent symbols, or duplicate sym-
bols.

PRM Example with Wrong Steps

▶ Problem:
The number of each Nasal Cavity’s Pericytes equals
the difference of each Nasal Cavity’s Arrector Pili
Muscle Cells and each Vocal Cords’s Arrector Pili
Muscle Cells. The number of each Nasal Cavity’s
Gastrointestinal Smooth Muscle Cells equals 3
times as much as each Vocal Cords’s Arrector Pili
Muscle Cells. The number of each Respiratory
Mucosa’s Pericytes equals 4 times as much as the
sum of each Nasal Cavity’s Gastrointestinal Smooth
Muscle Cells and each Vocal Cords’s Arrector Pili
Muscle Cells. The number of each Vocal Cords’s
Pericytes equals 3. The number of each Respiratory
Mucosa’s Arrector Pili Muscle Cells equals 2. The
number of each Nasal Cavity’s Arrector Pili Muscle
Cells equals 3 more than the difference of each
Nasal Cavity’s Gastrointestinal Smooth Muscle
Cells and each Respiratory Mucosa’s Pericytes. The
number of each Vocal Cords’s Arrector Pili Muscle
Cells equals 3 times as much as each Vocal Cords’s
Gastrointestinal Smooth Muscle Cells. The number
of each Respiratory Mucosa’s Gastrointestinal
Smooth Muscle Cells equals each Nasal Cavity’s
Arrector Pili Muscle Cells. The number of each
Vocal Cords’s Gastrointestinal Smooth Muscle Cells
equals 4. How many Cells does Respiratory Mucosa
have?

▶ Responses + Labels:
"Define Vocal Cords’s Gastrointestinal Smooth Mus-
cle Cells as W;" [+]
"so W = 4." [+]
"Define Vocal Cords’s Arrector Pili Muscle Cells as
p;" [−]
"so p = 3 * W = 3 * 4 = 2." [−]
"Define Nasal Cavity’s Gastrointestinal Smooth Mus-
cle Cells as g;" [−]
"so g = 3 * p = 3 * 2 = 1." [−]
"Define Nasal Cavity’s Arrector Pili Muscle Cells as
e;" [−]
"c = g - p = 1 - 2 = 4;" [−]
"so e = 3 + c = 3 + 4 = 2." [−]
"Define Respiratory Mucosa’s Pericytes as z;" [−]
"w = g + p = 1 + 2 = 3;" [−]
"so z = 4 * w = 4 * 3 = 2." [−]
"Define Respiratory Mucosa’s Arrector Pili Muscle
Cells as F;" [−]
"so F = 2." [−]
"Define Respiratory Mucosa’s Gastrointestinal
Smooth Muscle Cells as P;"" [−]
so P = e = 2." [−]
"Define Respiratory Mucosa’s Cells as m;" [−]
"G = P + F = 2 + 2 = 4;" [−]
"so m = G + z = 4 + 2 = 1." [−]
▶ Parser:
existing_but_not_required_params: Vocal Cords’s
Arrector Pili Muscle Cells

Thus, this allows us to control the amount of
IC present and ultimately measure the effects of
unnecessary information on LLM’s responses. We
prepared a dataset of 5000 problems of varying OP
values ∈ [2, 15] as well as an additional 1000 prob-
lems of OP=15 so that the model had a sufficient
number of high operation training problems. Ulti-

mately, the PRM was trained on each problem and
each of its steps and used to facilitate our Tree of
Thoughts (ToT) algorithm.

In settings with a PRM, we generated responses
in a step by step manner by using ";" and "." as
our intermediary stop tokens. Each intermediary
step would be scored by the PRM and only the top
N/M responses would be selected as candidates in
the next step to be explored further. This process
was repeated until the LLM generated the <EOS>
token, signaling that the response was complete.
This final response would then be passed into the
parser to determine its correctness.

E Finetuning Details

Model We finetune LLaMA 3.2-1B Instruct
model released by Meta using both LoRA fine-
tuning and continued pretraining (full finetuning).
This model adopts a decoder-only transformer ar-
chitecture with rotary positional embeddings and
gated MLP layers. All experiments are performed
on two NVIDIA H100 GPUs.

Finetuning Configuration Due to some compu-
tational constraints, our training is conducted on
a fixed dataset of 30,000 samples. Each example
contains a complete problem-solution pair, and in-
puts exceeding 2048 tokens are filtered out. We
use a context length of 2048, a learning rate of
5e−5, and the AdamW optimizer with cosine learn-
ing rate decay. Training proceeds for 50 epochs
with a batch size of 8 and gradient accumulation
of 8 steps, yielding an effective batch size of 64.
We apply mixed-precision training with bfloat16,
no warmup, and a maximum gradient norm of 1.0.
Flash attention is enabled.

Evaluation Protocol We evaluate each model on
a fixed test set containing 100 examples per rea-
soning operation and per level of irrelevant context
(IC), including Light, Medium, and Hard. Evalu-
ations are performed separately on in-distribution
(ID) and out-of-distribution (OOD) data. This setup
enables precise measurement of reasoning robust-
ness under varying levels of distractibility, support-
ing our core analysis of how irrelevant information
affects model behavior.

Architectural Generalization. Recent con-
trolled studies suggest that decoder-only
transformer models equipped with full atten-
tion and rotary positional embeddings tend to
exhibit similar learning dynamics and inductive

biases, even when implemented under different
architectures. These models—such as GPT-style,
LLaMA, Mixtral, and others—differ in details
like normalization placement or gated MLPs, but
such variations do not appear to fundamentally
alter their learnability or reasoning behavior in
practice (Allen-Zhu and Li, 2024a,b,c). In our
case, although early experiments were conducted
using a LLaMA-style architecture, all final results
presented in this paper are based on the more
recent LLaMA 3.2–1B Instruct model. We did
not observe substantial performance differences
across architectures during preliminary runs.
Given resource constraints, we focus on LLaMA
3.2–1B in this version; however, we acknowledge
that running a comprehensive comparison across
reasoning models (e.g. DeepSeek-R1) would
strengthen the generality of our findings and plan
to pursue this in future work.

Does More In-Distribution Data Help? To iden-
tify an effective training budget, we varied the num-
ber of in-distribution samples from 1 K to 30 K and
observed saturating OOD gains around 30 K (Fig-
ure 9). Based on this, we fixed 30 K samples for
all subsequent experiments.

0 5000 10000 15000 20000 25000 30000
Number of ID Training Samples

0

5

10

15

OO
D

Ac
cu

ra
cy

 (%
)

Clean+IC
IC
Clean

Figure 9: OOD step accuracy as a function of in-
distribution training size.

	Introduction
	Related Work
	The GSM-DC Dataset
	Dependency Graph Construction
	Irrelevant Context Injection
	Natural Language Realization
	Stepwise Solution Evaluator

	Experiments
	Impact of Irrelevant Context
	Training with Different Strategies
	Control of Training Data

	Improving Model Robustness Against Irrelevant Context
	Conclusion
	Dataset Samples
	Training Dataset with Different IC for Finetuned Model
	Testing on Closed-Sourced Model

	Quantifying Irrelevant Information
	Operation‑Range Bias in GSM‑IC
	Process Reward Model
	Finetuning Details

